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Abstract

We examine the robustness and privacy properties of Bayesian
inference under assumptions on the prior, but without any modifi-
cations to the Bayesian framework. First, we generalise the concept
of differential privacy to arbitrary dataset distances, outcome spaces
and distribution families. We then prove bounds on the robustness
of the posterior, introduce a posterior sampling mechanism, show
that it is differentially private and provide finite sample bounds for
distinguishability-based privacy under a strong adversarial model.
Finally, we give examples satisfying our assumptions.

1 Introduction

Significant research challenges for statistical learning include efficiency, ro-
bustness to noise (stochasticity) and adversarial manipulation, and pre-
serving training data privacy. In this paper we study techniques for meet-
ing these challenges simultaneously. In particular, we examine the follow-
ing problem.

Summary of setting. A Bayesian statistician (B) wants to communicate
results about some data x to a third party (A ), but without revealing the
data x itself. More specifically: (i) B selects a model family (FΘ) and a prior
(ξ). (ii) A is allowed to see FΘ and ξ and is computationally unbounded.
(iii) B observes data x and calculates the posterior ξ(θ|x). (iv) A performs
repeated queries to B. (v) A responds by sampling from the posterior
ξ(θ|x).

We show that if FΘ or ξ is chosen appropriately, the resulting mecha-
nism satisfies generalized differential privacy and indistinguishability prop-
erties. The main idea we pursue is that robustness and privacy are in-
herently linked through smoothness. Learning algorithms that are smooth
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mappings—their output (e.g., a spam filter) does not significantly vary with
small perturbations to their input (e.g., similar training corpora)—enjoy ro-
bustness. Intuitively under smoothness, training outliers have reduced in-
fluence while it is also difficult for an adversary to leverage knowledge of
the learning process to discover unknown information about the data. This
suggests that robustness and privacy may be simultaneously achieved and
perhaps are deeply linked. We show that under mild assumptions, this is
indeed true for the posterior distribution.

The study of learning, security, robustness and privacy, and their rela-
tionships, is timely. Interest in adversarial learning is accelerating Joseph et al.
(2013) while differential privacy has brought data privacy onto firm theo-
retical footing Dwork et al. (2006); McSherry & Talwar (2007); Duchi et al.
(2013). In practice, security and privacy online are in tension with learn-
ing and are of growing economic and societal concern. Our works aims
towards a unified understanding of learning in adversarial environments.

Our contributions.

(i) We generalise differential privacy to arbitrary dataset distances, out-
come spaces, and distribution families.

(ii) Under certain regularity conditions on the prior distribution ξ or like-
lihood family FΘ, we show that the posterior distribution is robust:
small changes in the dataset result in small posterior changes;

(iii) We introduce a novel posterior sampling mechanism that is private. Un-
like other common mechanisms, our approach sits squarely in the
non-private (Bayesian) learning framework without modification;

(iv) We introduce the notion of dataset distinguishability for which we pro-
vide finite-sample bounds for our mechanism

(v) We provide some classical examples of conjugate distributions where
our assumptions hold.

Paper organisation. Section 1.1 discusses related work. Section 2 speci-
fies the problem setting and our main assumptions. Section 3 proves results
on robustness of Bayesian learning with a number of examples. Section 4
bounds the ability of the adversary to discriminate datasets. Examples of
distributions for which our assumptions hold are given in Section 5. We
conclude the paper with Section 6. Proofs of the main theorems are given

2



in the appendix, while those of non-essential lemmas are given in the sup-
plement.

1.1 Related Work

In Bayesian statistical decision theory DeGroot (1970); Berger (1985); Bickel & Doksum
(2001), learning is cast as a statistical inference problem and decision-theoretic
criteria are used as a basis for assessing, selecting and designing proce-
dures. In particular, for a given cost function, the Bayes-optimal procedure
minimises the Bayes risk under a particular prior distribution.

In an adversarial setting, this is extended to a minimax risk, by assum-
ing that the prior distribution is selected arbitrarily by nature. In the field
of robust statistics, the minimax asymptotic bias of a procedure incurred
within an ǫ-contamination neighbourhood is used as a robustness crite-
rion giving rise to the notion of a procedure’s influence function and break-
down point to characterise robustness Huber (1981); Hampel et al. (1986).
In a Bayesian context, robustness appears in several guises including min-
imax risk, robustness of the posterior within ǫ-contamination neighbour-
hoods, and robust priors Berger (1985). In this context Grünwald & Dawid
(2004) demonstrated the link between robustness in terms of the minimax
expected score of the likelihood function and the (generalized) maximum
entropy principle, whereby nature is allowed to select a worst-case prior.

Differential privacy, first proposed by Dwork et al. (2006), has achieved
prominence in the theory of computer science, databases, and more re-
cently learning communities. Its success is largely due to the semantic
guarantee of privacy it formalises. Differential privacy is normally defined
with respect to a randomised mechanism for responding to queries. Infor-
mally, a mechanism preserves differential privacy if perturbing one train-
ing instance results in small a change to the probabilities of the mechanism.

A popular approach for achieving differential privacy is the exponential
mechanism McSherry & Talwar (2007) which generalises the Laplace mecha-
nism of adding Laplace noise to released statistics Dwork et al. (2006). This
releases a response with probability exponential in a score function mea-
suring distance to the non-private response. An alternate approach, em-
ployed for privatising regularised ERM Chaudhuri et al. (2011), is to alter
the inferential procedure itself, in that case by adding a random term to the
primal objective. Unlike previous studies, our mechanisms do not require
modification to the underlying learning framework.

In a different direction, Duchi et al. (2013) provided information-theoretic
bounds for private learning, by modelling the protocol for interacting with
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an adversary as an arbitrary conditional distribution, rather than restrict-
ing it to specific mechanisms. These bounds can be seen as complementary
to ours.

Little research in differential privacy has focused on the Bayesian paradigm.
Williams & McSherry (2010) applied probabilistic inference to improve the
utility of differentially private releases by computing posteriors in a noisy
measurement model.

Smoothness of the learning map, achieved for Bayesian inference here
by appropriate concentration of the prior, is related to algorithmic stability
which is used in statistical learning theory to establish error rates Bousquet & Elisseeff
(2002). Rubinstein et al. (2012) used the γ-uniform stability of the SVM to
calibrate the level of noise for using the Laplace mechanism to achieve dif-
ferential privacy for the SVM. Hall et al. (2013) extended this technique to
adding Gaussian process noise for differentially private release of infinite-
dimensional functions lying in an RKHS.

Finally, Dwork & Lei (2009) made the first connection between (frequen-
tist) robust statistics and differential privacy, developing mechanisms for
the interquartile, median and B-robust regression. While robust statistics
are designed to operate near an ideal distribution, they can have prohibitively
high global, worst-case sensitivity. In this case privacy was still achieved
by performing a differentially-private test on local sensitivity before re-
lease Dwork & Smith (2009). Little further work has explored robustness
and privacy, and no general connection is known.

2 Problem Setting

We consider the problem of a Bayesian statistician (B) communicating sta-
tistical findings to an untrusted third party (A ). While B wants to convey
useful statistical information to any queries, but without revealing private
information about the original data (e.g., how many people suffer from a
disease or vote for a particular party). In so doing, B must also preserve
the local privacy of users represented in the dataset. This requires finding
a query response mechanism for communicating information that strikes a
good balance between utility and privacy. In this paper, we study the in-
herent privacy and robustness properties of Bayesian inference and explore
the question of whether B can select a prior distribution so that a compu-
tationally unbounded A cannot obtain private information from queries.
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2.1 Definitions

We begin with our notation. Let S be the set of all possible datasets. For
example, if X is a finite alphabet, then we might have S =

⋃∞
n=0 X n, i.e.,

the set of all possible observation sequences over X .

Comparing datasets. Central to notions of privacy and robustness, is the
concept of distance between datasets. Firstly, the effect of dataset pertur-
bation on learning depends on the amount of noise as quantified by some
distance. Secondly, the amount that an attacker can learn from queries can
be quantified in terms of the distance of his guesses to the true dataset. To
model these situations, we equip S with a pseudo-metric1 ρ : S ×S → R+.
Using pseudo-metrics, we considerably generalise previous work on differ-
ential privacy, which considers only the special case of Hamming distance.

Bayesian inference. This paper focuses on the Bayesian inference setting,
where the statistician B constructs a posterior distribution from a prior
distribution ξ and a training dataset x. More precisely, we assume that data
x ∈ S have been drawn from some distribution Pθ∗ on S , parametrised by
θ∗, from a family of distributions FΘ. B defines a parameter set Θ indexing
a family of distributions FΘ on (S ,SS ), where SS is an appropriate σ-
algebra on S :

FΘ , { Pθ : θ ∈ Θ } , (2.1)

and where we use pθ to denote the corresponding densities2 when neces-
sary. To perform inference in the Bayesian setting, B selects a prior mea-
sure ξ on (Θ,SΘ) reflecting B’s subjective beliefs about which θ is more
likely to be true, a priori; i.e., for any measurable set B ∈ SΘ, ξ(B) repre-
sents B’s prior belief that θ∗ ∈ B. In general, the posterior distribution after
observing x ∈ S is:

ξ(B | x) =

∫

B pθ(x)dξ(θ)

φ(x)
, (2.2)

where φ is the corresponding marginal density given by:

φ(x) ,
∫

Θ
pθ(x)dξ(θ) . (2.3)

While the choice of the prior is generally arbitrary, this paper shows that its
careful selection can yield good privacy guarantees.

1Meaning that ρ(x, y) = 0 does not necessarily imply x = y.
2I.e., the Radon-Nikodym derivative of Pθ with respect to some dominating measure ν
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Privacy. We first recall the idea of differential privacy Dwork (2006). This
states that on similar datasets, a randomised query response mechanism
yields (pointwise) similar distributions. We adopt the view of mechanisms
as conditional distributions under which differential privacy can be seen as
a measure of smoothness. In our setting, conditional distributions conve-
niently correspond to posterior distributions. These can also be interpreted
as the distribution of a mechanism that uses posterior sampling, to be in-
troduced in Section 4.2.

Definition 1 ((ǫ, δ)-differential privacy). A conditional distribution P(· | x)
on (Θ,SΘ) is (ǫ, δ)-differentially private if, for all B ∈ SΘ and for any x ∈
S = X n

P(B | x) ≤ eǫP(B | y) + δ,

for all y in the hamming-1 neighbourhood of x. That is, there is at most one
i ∈ {1, . . . , n} such that xi 6= yi.

As a first step, we generalise this definition to arbitrary dataset spaces
S that are not necessarily product spaces. To do so, we introduce the notion
of differential privacy under a pseudo-metric ρ on the space of all datasets.

Definition 2 ((ǫ, δ)-differential privacy under ρ.). A conditional distribution
P(· | x) on (Θ,SΘ) is (ǫ, δ)-differentially private under a pseudo-metric ρ :
S × S → R+ if, for all B ∈ SΘ and for any x ∈ S , then:

P(B | x) ≤ eǫρ(x,y)P(B | y) + δρ(x, y) ∀y .

Remark 1. If S = X n and we use the Hamming distance ρ(x, y) = ∑
n
i=1 I {xi 6= yi},

this definition is analogous to standard (ǫ, δ)-differential privacy. In fact, when
considering only (ǫ, 0)- differential privacy or (0, δ)-privacy, it is an equivalent
notion.3

Proof. For (ǫ, 0)-DP, let ρ(x, z) = ρ(z, y) = 1; i.e., they only differ in one
element. Then, from standard DP, we have P(B | x) ≤ eǫP(B | z) and so
obtain P(B | x) ≤ e2ǫP(B | y) = eρ(x,y)ǫP(B | y). By induction, this holds
for any x, y pair. Similarly, for (0, δ)-DP, by induction we obtain P(B | x) ≤
P(B | x) + δρ(x, y).

Definition 1 allows for privacy against a very strong attacker A , who
attempts to match the empirical distribution of the true dataset by querying

3Making the definition wholly equivalent is possible, but results in an unnecessarily
complex definition.
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the learned mechanism and comparing its responses to those given by dis-
tributions simulated using knowledge of the mechanism and knowledge
of all but one datum—narrowing the dataset down to a hamming-1 ball.
Indeed this requirement is sometimes too strong since it may come at the
price of utility. Our Definition 2 allows for a much broader encoding of the
attacker’s knowledge via the selected pseudo-metric.

2.2 Our Main Assumptions

In the sequel, we show that if the distribution family FΘ or prior ξ is such
that close datasets x, y ∈ S have similar probabilities, then its posterior
distributions are close. In that case, it is difficult for a third party to use
such a posterior to distinguish the true dataset x from similar datasets.

To formalise these notions, we introduce two possible assumptions one
could make on the smoothness of the family FΘ with respect to some metric
d on R+. The first assumption states that the likelihood is smooth for all
parameterizations of the family:

Assumption 1 (Lipschitz continuity). Let d(·, ·) be a metric on R. There exists
L > 0 such that, for any θ ∈ Θ:

d(pθ(x), pθ(y)) ≤ Lρ(x, y), ∀x, y ∈ S . (2.4)

However, it may be difficult for this assumption to hold uniformly over
Θ. This can be seen by a counterexample for the Bernoulli family of distri-
butions. Consequently, we relax it by only requiring that B’s prior proba-
bility ξ is concentrated in the parts of the family for which the likelihood is
smoothest:

Assumption 2 (Relaxed Lipschitz continuity). Let d(·, ·) be a metric on R and
let

ΘL ,
{

θ ∈ Θ : sup
x,y∈S

{

d(pθ(x), pθ(y))−
a

b
Lρ(x, y)

}

≤ 0
}

(2.5)

be the set of parameters for which Lipschitz continuity holds with Lipschitz con-
stant L. Then there is some constant c > 0 such that, for all L ≥ 0:

ξ(ΘL) ≥ 1 − exp(−cL). (2.6)
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By not requiring uniform smoothness, this weaker assumption is easier
to meet but still yields useful guarantees. In fact, in Section 5, we demon-
strate that this assumption is satisfied by several example distribution fam-
ilies.

To make our assumptions concrete, we now fix the distance function d
to be the absolute log-ratio,

d(a, b) ,

{

0 if a = b = 0
∣

∣ln a
b

∣

∣ otherwise
, (2.7)

which is a proper metric on R+ × R+.This particular choice of distance
yields guarantees on differential privacy and indistinguishability.

We next show that verifying our assumptions for a distribution of a
single random variable lifts to a corresponding property for the product
distribution on i.i.d. samples.

Lemma 1. If pΘ satisfies Assumption 1 (resp. Assumption 2) with respect to
pseudo-metric ρ and constant L (or c), then, for any fixed n ∈ N, pn

Θ({ xi }) =

∏
n
i=1 pΘ(xi) satisfies the same assumption with respect to:

ρn({ xi } , { yi }) = ∑
n
i=1 ρ(xi, yi)

and constant L · n (or c
n ). Further, if { xi } and { yi } differ in at most k items,

the assumption holds with the same pseudo-metric but with constant L · k (or c
k )

instead.

3 Robustness of the Posterior Distribution

We now show that the above assumptions provide guarantees on the ro-
bustness of the posterior. That is, if the distance between two datasets x, y
is small, then so too is the distance between the two resulting posteriors,
ξ(· | x) and ξ(· | y). We prove this result for the case where we measure the
distance between the posteriors in terms of the well-known KL-divergence:

D (P ‖ Q) =
∫

S
ln

dP

dQ
dP . (3.1)

The following theorem shows that any distribution family FΘ and prior ξ

satisfying one of our assumptions is robust, in the sense that the posterior
does not change significantly with small changes to the dataset. It is notable
that our mechanisms are simply tuned through the choice of prior.
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Theorem 1. When d : R+ ×R+ → R+ is the absolute log-ratio distance (2.7),
ξ is a prior distribution on Θ and ξ(· | x) and ξ(· | y) are the respective posterior
distributions for datasets x, y ∈ S , the following results hold:

(i) Under a metric ρ and L > 0 satisfying Assumption 1,

D (ξ(· | x) ‖ ξ(· | y)) ≤ 2Lρ(x, y) (3.2)

(ii) Under a metric ρ and c > 0 satisfying Assumption 2,

D (ξ(· | x) ‖ ξ(· | y)) ≤ κ

c
· ρ(x, y) (3.3)

where κ is constant (see Appendix C); κ ≈ 4.91081.

Note that the second claim bounds the KL divergence in terms of B’s
prior belief that L is small, which is expressed via the constant c. The larger
c is, the less prior mass is placed in large L and so the more robust inference
becomes. Of course, choosing c to be too large may decrease efficiency.

4 Privacy Properties of the Posterior Distribution

We next examine the differential privacy of the posterior distribution. We
show in Section 4.1 that this can be achieved under either of our assump-
tions. The result can also be interpreted as the differential privacy of a pos-
terior sampling mechanism for responding to queries, which is described in
Section 4.2. Finally, Section 4.3 introduces an alternative notion of privacy:
dataset distinguishability. We prove a high-probability bound on the sample
complexity of distinguishability under our assumptions.

4.1 Differential Privacy of Posterior Distributions

We consider our generalised notion of differential privacy for posterior dis-
tributions (Definition 2); and show that the type of privacy exhibited by the
posterior depends on which assumption holds.

Theorem 2. Using the log-ratio distance (as in Theorem 1),

(i) Under Assumption 1, for all x, y ∈ S , B ∈ SΘ:

ξ(B | x) ≤ exp{2Lρ(x, y)}ξ(B | y) (4.1)

i.e., the posterior ξ is (2L, 0)-differentially private under pseudo-metric ρ.
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(ii) Under Assumption 2, for all x, y ∈ S , B ∈ SΘ:

|ξ(B | x)− ξ(B | y)| ≤
√

κ

2c
ρ(x, y)

i.e., the posterior ξ is
(

0,
√

κ
2c

)

-differentially private under pseudo-metric√
ρ.

4.2 Posterior Sampling Query Model

Given that we have a full posterior distribution, we use it to define an al-
gorithm achieving privacy. In this framework, we allow the adversary to
submit a set of queries { qk } which are mappings from parameter space Θ

to some arbitrary answer set Ψ; i.e.,, qk : Θ → Ψ. If we know the true pa-
rameter θ, then we would reply to any query with qk(θ). However, since θ

is unknown, we must select a method for conveying the required informa-
tion. There are three main approaches that we are aware of. The first is to
marginalise θ out. The second is to use the maximum a posteriori value of θ.
The final, which we employ here, is to use sampling; i.e., to reply to each
query qk using a different θk sampled from the posterior.

This sample-based query model is presented in Algorithm 1. First, the
algorithm calculates the posterior distribution ξ(· | x). Then, for the kth

received query qk, the algorithm draws a sample θk from the posterior dis-
tribution and responds with qk(θk).

In this context, Theorem 2 can be interpreted as proving differential pri-
vacy for the posterior sampling mechanism for the case when the response
set is the parameter set; i.e., Ψ = Θ and qk(θ) = θ.

Algorithm 1 Posterior sampling query model

1: Input prior ξ, data x ∈ S
2: Calculate posterior ξ(· | x).
3: for k = 1, . . . do

4: Observe query qk : Θ → Ψ.
5: Sample θk ∼ ξ(· | x).
6: Return qk(θk).
7: end for

As a further illustration, we provide the example of querying condi-
tional expectations.
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Example 1. Let each model Pθ in the family define a distribution on the product
space S =

⋃∞
n=1 X n, such for any x = (x1, . . . , xn) ∈ X n, Pθ(x) = ∏i Pθ(xi).

In addition, let X = Y × Z (with appropriate algebras SX ,SY ,SZ ) and write
xi = (xi,Y , xi,Z) for point xi and its two components. A conditional expectation
query would require an answer to the question:

Eθ(x|Y | x|Z),

where the parameter θ is unknown to the questioner. In this case, the answer set Ψ

would be identical to Y , while k would index the values in Z .

4.3 Distinguishability of Datasets

A limitation of the differential privacy framework is that it does not give us
insight on the amount of effort required by an adversary to obtain private
information. In fact, an adversary wishing to breach privacy, needs to dis-
tinguish x from alternative datasets y. Within the posterior sampling query
model, A has to decide whether B’s posterior is ξ(· | x) or ξ(· | y). How-
ever, he can only do so within some neighbourhood ǫ of the original data.
In this section, we bound his error in determining the posterior in terms
of the number of queries he performs. This is analogous to the dataset-size
bounds on queries in interactive models of differential privacy Dwork et al.
(2006).

Let us consider an adversary querying to sample θk ∼ ξ(· | x). This is
the most powerful query possible under the model shown in Algorithm 1.
Then, the adversary needs only to construct the empirical distribution to
approximate the posterior up to some sample error. By bounds on the KL
divergence between the empirical and actual distributions we can bound
his power in terms of how many samples he needs in order to distinguish
between x and y.

Due to the sampling model, we first require a finite sample bound on
the quality of the empirical distribution. The adversary could attempt to
distinguish different posteriors by forming the empirical distribution on
any sub-algebra S.

Lemma 2. For any δ ∈ (0, 1), let M be a finite partition of the sample space S , of
size m ≤ log2

√
1/δ, generating the σ-algebra S = σ(M ). Let x1, . . . , xn ∼ P

be i.i.d. samples from a probability measure P on S , let P|S be the restriction of P

on S and let P̂n
|S be the empirical measure on S. Then, with probability at least

1 − δ:
∥

∥

∥
P̂n
|S − P|S

∥

∥

∥

1
≤

√

3

n
ln

1

δ
. (4.2)
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Of course, the adversary could choose any arbitrary estimator ψ to guess
x. Appendix A describes how one might apply Le Cam’s method to obtain
lower bounds rates in this case. We defer a detailed discussion of this issue
to future work.

We can combine this bound on the adversary’s estimation error with
Theorem 1’s bound on the KL divergence between posteriors resulting from
similar data to obtain a measure of how fine a distinction between datasets
the adversary can make after a finite number of draws from the posterior:

Theorem 3. Under Assumption 1, the adversary can distinguish between data
x, y with probability 1 − δ if:

ρ(x, y) ≥ 3

4Ln
ln

1

δ
. (4.3)

Under Assumption 2, this becomes:

ρ(x, y) ≥ 3c

2κn
ln

1

δ
. (4.4)

Consequently, either smoother likelihoods (i.e., decreasing L), or a larger
concentration on smoother likelihoods (i.e., increasing c), both increases the
effort required by the adversary and reduces the sensitivity of the posterior.
Note that, unlike the results obtained for differential privacy of the poste-
rior sampling mechanism, these results have the same algebraic form under
both assumptions.

5 Examples satisfying our assumptions

In what follows we study, for different choices of likelihood and corre-
sponding conjugate prior, what constraints must be placed on the prior’s
concentration to guarantee a desired level of privacy. These case studies
closely follow the pattern in differential privacy research where the main
theorem for a new mechanism are sufficient conditions on (e.g., Laplace)
noise levels to be introduced to a response in order to guarantee a level ǫ of
ǫ-differential privacy.

First consider exponential families, of the form

pθ(x) = h(x) exp
{

η⊤
θ T(x)− A(ηθ)

}

,
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where h(x) is the base measure, ηθ is the distribution’s natural parameter
corresponding to θ, T(x) is the distribution’s sufficient statistic, and A(ηθ)
is its log-partition function. For distributions in this family, under the abso-
lute log-ratio distance, the family of parameters ΘL of Assumption 2 must

satisfy, for all x, y ∈ S :
∣

∣

∣
ln h(x)

h(y)
+ η⊤

θ (T(x)− T(y))
∣

∣

∣
≤ Lρ(x, y). If the left-

hand side has an amenable form, then we can quantify the set ΘL for which
this requirement holds. Particularly, for distributions where h(x) is con-
stant and T(x) is scalar (e.g., Bernoulli, exponential, and Laplace), this re-

quirement simplifies to
|T(x)−T(y)|

ρ(x,y)
≤ L

ηθ
. One can then find the supremum

of the left-hand side independent from θ, yielding a simple formula for the
feasible L for any θ. Here are some examples.

Lemma 3 (Exponential conjugate prior). The exponential distribution Exp(θ)
with exponential conjugate prior θ ∼ Exp(λ), λ > 0 satisfies Assumption 2 with
parameter c = λ and metric ρ(x, y) = |x − y|.

Lemma 4 (Laplace conjugate prior). The Laplace distribution Laplace(θ) and
Laplace conjugate prior θ ∼ Laplace(µ, s, λ), µ ∈ R, s ≥ L, λ > 0 satisfies
Assumption 2 with parameters c = λ and metric ρ(x, y) = |x − y|

Lemma 5 (Beta-Binomial conjugate prior). The Binomial distribution Binom(θ, n),
with Binomial prior θ ∼ Beta(α, β), α = β > 1 satisfies Assumption 2 for
c = O(α) and metric ρ(x, y) = |x − y|.

Lemma 6 (Normal distribution). The normal distribution N(µ, σ2) with an
exponential prior σ2 ∼ Exp(λ) satisfies Assumption 2 with parameter c = λ and
metric ρ(x, y) =

∣

∣x2 − y2
∣

∣+ 2 |x − y|.

Lemma 7 (Discrete Bayesian networks). Consider a family FΘ = { Pθ : θ ∈ Θ }
of discrete Bayesian networks on K variables. More specifically, each member Pθ, is
a distribution on a finite space S = ∏

K
k=1 Sk and we write Pθ(x) for the probability

of any outcome x = (x1, . . . , xK) in S . We also let ρ(x, y) , ∑
K
k=1 I {xk 6= yk}

be the distance between x and y. If ǫ is the smallest probability assigned to any one
sub-event, then Assumption 1 is satisfied with L = ln 1/ǫ.

6 Conclusion

We have provided a unifying framework for private and secure inference in
a Bayesian setting. Under simple but general assumptions, we have shown
that Bayesian inference is both robust and private in a certain sense. In
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particular, our results establish that generalised differential privacy can be
achieved while using only existing constructs in Bayesian inference. Our
results merely place concentration conditions on the prior. This allows us
to use a general posterior sampling mechanism for responding to queries.

Due to its relative simplicity on top of non-private inference, our frame-
work may thus serve as a fundamental building block for more sophisti-
cated, general Bayesian inference. As an additional step towards this goal,
we have demonstrated the application of our framework to deriving an-
alytical expressions for well-known distribution families, and for discrete
Bayesian networks. Finally, we bounded the amount of effort required of
an attacker to breach privacy when observing samples from the posterior.
This serves as a principled guide for how much access can be granted to
querying the posterior, while still guaranteeing privacy.

We have not examined how privacy concerns relate to learning. While
larger c improves privacy, it also concentrates the prior so much that learn-
ing would be inhibited. Thus, c should be chosen to optimise the trade-
off between privacy and learning. However, we leave this issue for future
work.

A The Le Cam Method

It is possible to apply standard minimax theory to obtain lower bounds
on the rate of convergence of the adversary’s estimate to the true data. In
order to do so, we can for example apply the method due to LeCam (1973),
which places lower bounds on the expected distance between an estimator
and the true parameter. In order to apply it in our case, we simply replace
the parameter space with the dataset space.

Le Cam’s method assumes the existence of a family of probability mea-
sures indexed by some parameter, with the parameter space being equipped
with a pseudo-metric. In our setting, we use Le Cam’s method in a slightly
unorthodox, but very natural manner. Define the family of probability
measures on Θ to be:

Ξ , { ξ(· | x) : x ∈ S } , (A.1)

the family of posterior measures in the parameter space, for a specific prior
ξ. Consequently, now S plays the role of the parameter space, while ρ is
used as the metric. The original family FΘ plays no further role in this
construction, other than a way to specify the posterior distributions from
the prior.
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Now let ψ be an arbitrary estimator of the unknown data x. As in Le
Cam, we extend ρ to subsets of S so that

ρ(A, B) , inf { ρ(x, y) : x ∈ A, y ∈ B } , A, B ⊂ S . (A.2)

Now we can re-state the following well-known Lemma for our specific
setting.

Lemma 8 (Le Cam’s method). Let ψ be an estimator of x on Ξ taking values in
the metric space (S , ρ). Suppose that there are well-separated subsets S1,S2 such
that ρ(S1,S2) ≥ 2δ. Suppose also that Ξ1, Ξ2 are subsets of Ξ such that x ∈ Si

for ξ(· | x) ∈ Ξi. Then:

sup
x∈S

Eξ(ρ(ψ, x) | x) ≥ δ sup
ξi∈co(Ξi)

‖ξ1 ∧ ξ2‖. (A.3)

This lemma has an interesting interpretation in our case. The quantity

Eξ(ρ(ψ, x) | x) =
∫

Θ
ρ(ψ(θ), x)dξ(θ | x),

is the expected distance between the real data x and the guessed data ψ(θ)
when θ is drawn from the posterior distribution.

Consequently, it is possible to apply this method pretty much directly to
obtain results for specific families of posteriors. As shown by e.g., Yu (1997),
even in simple scenarios the lower bound on the minimax estimation rate
is O(n−1/2).

B Proofs of examples

Proof of Lemma 3. We first compute the absolute log-ratio distance for any
x1 and x2 according to the exponential likelihood function:

d(pθ,n(x1), pθ,n(x2)) = θ|x1 − x2| .

Thus, under Assumption 2, using ρ(x, y) = |x − y|, the set of feasible pa-
rameters for any L > 0 is ΘL = (0, L). Therefore the assumption requires
the prior to adequately support this range, but because the CDF at L of the
exponential prior with parameter λ > 0 is simply given by 1 − exp(−λL),
every such prior satisfies the assumption with c = λ.
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Proof of Lemma 4. For any x1 and x2, the absolute log-ratio distance for this
distribution can be bounded as

d(pµ,s(x1), pµ,s(x2))

= 1
s |‖x1 − µ‖ − ‖x2 − µ‖| ≤ 1

s‖x1 − x2‖ ,

where the inequality follows from the triangle inequality applied to ‖ · ‖.
Thus, if we use ρ(x, y) = ‖x − y‖, the set of feasible parameters for As-
sumption 2 is µ ∈ R and s ≥ L. Again we can use an an exponential prior
with rate parameter lambda > 0 for the inverse scale, 1

s , and any prior on
µ to obtain the second part of Assumption 2. Every such prior satisfies the
assumption with c = λ. These similarities are not surprising considering
that if X ∼ Laplace(µ, s) then ‖X − µ‖ ∼ Exponential( 1

b ).

Proof of Lemma 5. Here, we consider data drawn from a binomial distribu-
tion with a beta prior on its proportion parameter, θ. Thus, the likelihood
and prior functions are

pθ,n(X = k) = (n
k)θ

k(1 − θ)n−k

ξ0(θ) =
1

B(a,b)
θa−1(1 − θ)b−1 ,

where k ∈ {0, 1, 2, . . . , n}, a, b ∈ R+ and B(a, b) is the beta function. The
resulting posterior is a beta-binomial distribution. Again we consider the
application of Assumption 2 to this beta-binomial distribution. For this
purpose, we must quantify the parameter sets ΘL for a given L > 0 ac-
cording to a distance function. The absolute log-ratio distance between the
binomial likelihood function for any pair of arguments, k1 and k2, is

d(pθ,n(k1), pθ,n(k2)) =
∣

∣∆n(k1, k2) + (k1 − k2) ln θ
1−θ

∣

∣

where ∆n(k1, k2) , ln ( n
k1
) − ln ( n

k2
). By substituting this distance into the

supremum of Eq. (2.5), we seek feasible values of L > 0 for which the supre-
mum is non-negative; here, we explore the case where ρ((n, k1), (n, k2)) ,
|k1 − k2|. Without loss of generality, we assume k1 > k2, and thus require
that

sup
k1>k2

∣

∣

∣

∆n(k1,k2)
k1−k2

+ ln θ
1−θ

∣

∣

∣
≤ L . (B.1)

However, by the definition of ∆n(k1, k2), the ratio ∆n(k1,k2)
k1−k2

is in fact the slope

of the chord from k2 to k1 on the function ln (n
k). Since the function ln (n

k) is
concave in k, this slope achieves its maximum and minimum at its bound-
ary values; i.e., it is maximised for k1 = 1 and k2 = 0 and minimised
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for k1 = n and k2 = n − 1. Thus, the ratio attains a maximum value of
ln n and a minimum of − ln n for which the above supremum is simply
ln n +

∣

∣ln θ
1−θ

∣

∣. From Eq. (B.1), we therefore have, for all L ≥ ln n:

ΘL =

[

(

1 + eL

n

)−1
,
(

1 + n
eL

)−1
]

.

We want to bound ξ(ΘL). We know that: ξ(ΘL) = 1 − ξ(Θ∁
L) where Θ∁

L

is the complement of ΘL. We selected α = β, so 1 − ξ(Θ′) is composed of

two symmetric intervals:
[

0, (1 + eL

n )
−1

)

and
(

(1 + n
eL )

−1, 1
]

. In addition,

the mass must concentrate at 1
2 , as we have α > 1.

Due to symmetry, the mass outside of ΘL is two times that is the first
interval. This is:

2

B(α, α)
·
∫ z

0
xα−1(1 − x)α−1 dx.

Since α > 1 it holds that for all x ∈ [0, z]:

(1 − x)α−1 ≤ 1, z <
1

2
.

This is bounded above by simply appyling the max bound for integrals.

2

B(α, α)
·
∫ z

0
xα−1(1 − x)α−1dx <

2

B(α, α)

∫ z

0
xα−1dx

=
2

B(α, α)

1

α
· zα

If we use z = (1 + eL

n )
−1 i.e. the desired upper limit we have:

2

B(α, α)

1

α
· zα =

2

B(α, α)
· 1

α
· nα · (n + eL)−α

Finally, we have that n > 0 and hence, (n + eL)−α < e−αL so that we
have: 2

B(α,α)
· 1

α · nα · (n + eL)−α <
2

B(α,α)
· 1

α · nα · e−αL. We want to upper

bound this by e−cL. Solving for c, we obtain

c ≤ ln(1/v) + α.

where v = 2
B(α,α) · 1

α · nα.
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Proof of Lemma 6. For the normal distribution (2.5) requires: 2Lρ(x, y)σ2 ≥
|2µ − x − y| |x − y|. Taking the absolute log ratio of the Gaussian densities
we have

1

2σ2

∣

∣

(

(x − µ)2 − (y − µ)2
)
∣

∣

≤max { |µ|, 1 }
2σ2

(∣

∣x2 − y2
∣

∣+ 2 |x − y|
)

.

Consequently, we can set ρ(x, y) =
∣

∣x2 − y2
∣

∣ + 2 |x − y| and L(µ, σ) =
max{ |µ|,1 }

2σ2 . It is easy to see that the normal distribution with an exponen-
tial prior on its variance satisfies the assumptions.

Proof of Lemma 7. It is instructive to first examine the case where all vari-
ables are independent and we have a single observation. Then Pθ(x) =

∏
K
k=1 θk,xk

and

∣

∣

∣

∣

ln
Pθ(x)

Pθ(y)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ln
K

∏
k=1

θk,xk

θk,yk

∣

∣

∣

∣

∣

≤
K

∑
k=1

∣

∣

∣

∣

ln
θk,xk

θk,yk

∣

∣

∣

∣

I {xk 6= yk}

≤ max
i,j,k

∣

∣

∣

∣

ln
θk,i

θk,j

∣

∣

∣

∣

ρ(x, y). (B.2)

Consequently, if ǫ is the smallest probability assigned to any one sub-event,
then L > ln 1/ǫ.

In the general case, we have observations sequences xk,t, yk,t and depen-
dent variables. To take the network connectivity into account, let v ∈ N

K

be such that vk = 1 + deg(k) and define: ρ(x, y) , v⊤δ(x, y) and δk(x, y) ,

∑t I {xk,t 6= yk,t}. Using a similar argument to (B.2), it is easy to see that in

this case | ln
Pθ(x)
Pθ(y)

| ≤ ln 1
ǫ · ρ(x, y).

C Collected Proofs

Proof of Lemma 1. For Assumption 1, the proof follows directly from the
definition of the absolute log-ratio distance; namely,

d(pn
Θ({ xi }), pn

Θ({ yi })) = n ∑
n
i=1 d(pΘ(xi), pΘ(yi))

≤ L · n ∑
n
i=1 d(xi, yi) .

This can be reduced from n to k if only k items differ since d(pΘ(xi), pΘ(yi)) =
0 if xi = yi.
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For Assumption 2, the same argument shows that the ΘL from Eq. (2.5)
becomes ΘL·n (or ΘL·k for the k differing items case) for the product distri-
bution. Hence, the same prior can be used to give the bound required by
Eq. (2.6) if parameter c

n (or c
k ) is used.

Proof of Theorem 1. Let us now tackle claim (1.i). First, we can decompose
the KL-divergence into two parts.

D (ξ(· | x) ‖ ξ(· | y)) =
∫

Θ
ln

dξ(θ | x)

dξ(θ | y)
dξ(θ)

=
∫

Θ
ln

pθ(x)

pθ(y)
dξ(θ) +

∫

Θ
ln

φ(y)

φ(x)
dξ(θ)

≤
∫

Θ

∣

∣

∣

∣

ln
pθ(x)

pθ(y)

∣

∣

∣

∣

dξ(θ) +
∫

Θ
ln

φ(y)

φ(x)
dξ(θ)

≤Lρ(x, y) +

∣

∣

∣

∣

ln
φ(y)

φ(x)

∣

∣

∣

∣

. (C.1)

From Ass. 1, pθ(y) ≤ exp(Lρ(x, y))pθ(x) for all θ so:

φ(y) =
∫

Θ
pθ(y)dξ(θ)

≤ exp(Lρ(x, y))
∫

Θ
pθ(x)dξ(θ)

= exp(Lρ(x, y))φ(x). (C.2)

Combining this with (C.1) we obtain

D (ξ(· | x) ‖ ξ(· | y)) ≤ 2Lρ(x, y). (C.3)

Claim (1.ii) is dealt with similarly. Once more, we can break down the dis-
tance in parts. Let Θ[a,b] , Θb \ Θa. Then ξ(Θ[a,b]) = ξ(Θb)− ξ(Θa) ≤ e−ca,
as Θb ⊃ Θa, while ξ(Θb) ≤ 1 and ξ(Θa) ≥ 1 − e−ca from Ass 2. We can
thus partition Θ into disjoint sets corresponding to uniformly sized inter-
vals [(L − 1)α, Lα) of size α > 0 indexed by L. We bound the divergence on
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each partition and sum over L.

D (ξ(· | x) ‖ ξ(· | y))

≤
∞

∑
L=1

{

∫

Θ[(L−1)α,Lα)

∣

∣

∣

∣

ln
pθ(x)

pθ(y)

∣

∣

∣

∣

dξ(θ)

+
∫

Θ[(L−1)α,Lα]

ln
φ(y)

φ(x)
dξ(θ)

}

≤2ρ(x, y)α
∞

∑
L=1

Le−c(L−1)α

=2ρ(x, y)α
(

1 − e−cα
)−2

, (C.4)

via the geometric series. This holds for any size parameter α > 0 and is
convex for α > 0, c > 0. Thus, there is an optimal choice for α that min-
imizes this bound. Differentiating w.r.t α and setting the result to 0 yields
α⋆ = ω

c where ω is the unique non-zero solution to eω = 2ω + 1. The
optimal bound is then

D (ξ(· | x) ‖ ξ(· | y)) ≤ 2ω

(1 − e−ω)2
· ρ(x, y)

c

As the ω ≈ 1.25643 is the unique positive solution to eω = 2ω + 1, and we
define κ = 2ω

(1−e−ω)2 ≈ 4.91081.

Proof of Theorem 2. For part (2.i), we assumed that there is an L > 0 such

that ∀x, y ∈ S ,
∣

∣

∣
log

pθ(x)
pθ(y)

∣

∣

∣
≤ Lρ(x, y), thus implying

pθ(x)
pθ(y)

≤ exp{Lρ(x, y)}.

Further, in the proof of Theorem 1, we showed that φ(y) ≤ exp{Lρ(x, y)}φ(x)
for all x, y ∈ S . From Eq. 2.2, we can then combine these to bound the pos-
terior of any B ∈ SΘ as follows for all x, y ∈ S :

ξ(B | x) =

∫

B
pθ(x)
pθ(y)

pθ(y)dξ(θ)

φ(y)
· φ(y)

φ(x)

≤ exp{2Lρ(x, y)}ξ(B | y) .

For part (2.ii), note that from Theorem (1.ii) that the KL divergence of
the posteriors under assumption is bounded by κρ(x, y)/c. Now, recall
Pinsker’s inequality (cf. Fedotov et al., 2003):

D (Q‖P) ≥ 1

2
‖Q − P‖2

1 . (C.5)
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Using it, this bound yields: |ξ(B | x)− ξ(B | y)| ≤
√

1
2 D (ξ(· | x) ‖ ξ(· | y)) ≤

√

κρ(x, y)/2c

Proof of Lemma 2. We use the inequality due to Weissman et al. (2003) on
the ℓ1 norm, which states that for any multinomial distribution p with m
outcomes, the ℓ1 deviation of the empirical distribution p̂n satisfies:

P(‖ p̂n − p‖1 ≥ ǫ) ≤ (2m − 2)e−
1
2 nǫ2

. (C.6)

The right hand side is bounded by em ln 2− 1
2 nǫ2

. Substituting ǫ =
√

3
n ln 1

δ :

P(‖ p̂n − p‖1 ≥
√

3

n
ln

1

δ
) ≤ em ln 2− 3

2 ln 1
δ (C.7)

≤ elog2

√
1
δ ln 2− 3

2 ln 1
δ = e

1
2 ln 1

δ − 3
2 ln 1

δ = δ.

where the second inequality follows from m ≤ log2

√
1/δ.

Proof of Theorem 3. Recall that the data processing inequality states that, for
any sub-algebra S:

∥

∥Q|S − P|S
∥

∥

1
≤ ‖Q − P‖1 . (C.8)

Using this and Pinsker’s inequality (C.5) we get:

2Lρ(x, y) ≥ 2Lǫ ≥ D (ξ(· | x)‖ξ(· | y))

≥ 1

2
‖ξ(· | x)− ξ(· | y)‖2

1

≥ 1

2

∥

∥ξ|S(· | x)− ξ|S(· | y)
∥

∥

2

1
. (C.9)

On the other hand, due to (4.2) the adversary’s ℓ1 error in the posterior

distribution is bounded by
√

3
n ln 1

δ with probability 1 − δ. Using the above

inequalities, we can bound the error in terms of the distinguishability of
the real dataset x from an arbitrary set y as:

4Lρ(x, y) ≥ 3

n
ln

1

δ
. (C.10)

Rearranging, we obtain the required result. The second case is treated sim-
ilarly to obtain:

2κρ(x, y)/c ≥ 3

n
ln

1

δ
. (C.11)
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